246 research outputs found

    Potential role of the anterior lateral line in sound localization in toadfish (Opsanus tau)

    Get PDF
    Author Posting. © The Company of Biologists, 2018. This article is posted here by permission of The Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 221 (2018): jeb180679, doi:10.1242/jeb.180679.Male oyster toadfish (Opsanus tau) acoustically attract females to nesting sites using a boatwhistle call. The rapid speed of sound underwater combined with the close proximity of the otolithic organs makes inner ear interaural time differences an unlikely mechanism to localize sound. To determine the role that the mechanosensory lateral line may play in sound localization, microwire electrodes were bilaterally implanted into the anterior lateral line nerve to record neural responses to vibrational stimuli. Highest spike rates and strongest phase-locking occurred at distances close to the fish and decreased as the stimulus was moved further from the fish. Bilateral anterior lateral line neuromasts displayed differential directional sensitivity to incoming vibrational stimuli, which suggests the potential for the lateral line to be used for sound localization in the near field. The present study also demonstrates that the spatially separated neuromasts of the toadfish may provide sufficient time delays between sensory organs for determining sound localization cues. Multimodal sensory input processing through both the inner ear (far field) and lateral line (near field) may allow for effective sound localization in fish.This study was funded by the National Science Foundation (IOS 1354745 to A.F.M.). C.A.R. was funded through a Rutherford Discovery Fellowship from the Royal Society of New Zealand and a Marine Biological Laboratory fellowship.2019-05-2

    Behavioural Response Thresholds in New Zealand Crab Megalopae to Ambient Underwater Sound

    Get PDF
    A small number of studies have demonstrated that settlement stage decapod crustaceans are able to detect and exhibit swimming, settlement and metamorphosis responses to ambient underwater sound emanating from coastal reefs. However, the intensity of the acoustic cue required to initiate the settlement and metamorphosis response, and therefore the potential range over which this acoustic cue may operate, is not known. The current study determined the behavioural response thresholds of four species of New Zealand brachyuran crab megalopae by exposing them to different intensity levels of broadcast reef sound recorded from their preferred settlement habitat and from an unfavourable settlement habitat. Megalopae of the rocky-reef crab, Leptograpsus variegatus, exhibited the lowest behavioural response threshold (highest sensitivity), with a significant reduction in time to metamorphosis (TTM) when exposed to underwater reef sound with an intensity of 90 dB re 1 µPa and greater (100, 126 and 135 dB re 1 µPa). Megalopae of the mud crab, Austrohelice crassa, which settle in soft sediment habitats, exhibited no response to any of the underwater reef sound levels. All reef associated species exposed to sound levels from an unfavourable settlement habitat showed no significant change in TTM, even at intensities that were similar to their preferred reef sound for which reductions in TTM were observed. These results indicated that megalopae were able to discern and respond selectively to habitat-specific acoustic cues. The settlement and metamorphosis behavioural response thresholds to levels of underwater reef sound determined in the current study of four species of crabs, enables preliminary estimation of the spatial range at which an acoustic settlement cue may be operating, from 5 m to 40 km depending on the species. Overall, these results indicate that underwater sound is likely to play a major role in influencing the spatial patterns of settlement of coastal crab species

    Pressure and particle motion detection thresholds in fish: A re-examination of salient auditory cues in teleosts

    Get PDF
    The auditory evoked potential technique has been used for the past 30years to evaluate the hearing ability of fish. The resulting audiograms are typically presented in terms of sound pressure (dB re. 1Pa) with the particle motion (dB re. 1ms–2) component largely ignored until recently. When audiograms have been presented in terms of particle acceleration, one of two approaches has been used for stimulus characterisation: measuring the pressure gradient between two hydrophones or using accelerometers. With rare exceptions these values are presented from experiments using a speaker as the stimulus, thus making it impossible to truly separate the contribution of direct particle motion and pressure detection in the response. Here, we compared the particle acceleration and pressure auditory thresholds of three species of fish with differing hearing specialisations, goldfish (Carassius auratus, weberian ossicles), bigeye (Pempheris adspersus, ligamentous hearing specialisation) and a third species with no swim bladder, the common triplefin (Forstergyian lappillum), using three different methods of determining particle acceleration. In terms of particle acceleration, all three fish species have similar hearing thresholds, but when expressed as pressure thresholds goldfish are the most sensitive, followed by bigeye, with triplefin the least sensitive. It is suggested here that all fish have a similar ability to detect the particle motion component of the sound field and it is their ability to transduce the pressure component of the sound field to the inner ear via ancillary hearing structures that provides the differences in hearing ability. Therefore, care is needed in stimuli presentation and measurement when determining hearing ability of fish and when interpreting comparative hearing abilities between species

    Measuring public perceptions of sex offenders: reimagining the Community Attitudes Toward Sex Offenders (CATSO) scale

    Get PDF
    The Community Attitudes Toward Sex Offenders (CATSO) scale is an 18-item self-report questionnaire designed to measure respondents’ attitudes toward sex offenders. Its original factor structure has been questioned by a number of previous studies, and so this paper sought to reimagine the scale as an outcome measure, as opposed to a scale of attitudes. A face validity analysis produced a provisional three-factor structure underlying the CATSO: ‘punitiveness,’ ‘stereotype endorsement,’ and ‘risk perception.’ A sample of 400 British members of the public completed a modified version of the CATSO, the Attitudes Toward Sex Offenders scale, the General Punitiveness Scale, and the Rational-Experiential Inventory. A three-factor structure of a 22-item modified CATSO was supported using half of the sample, with factors being labeled ‘sentencing and management,’ ‘stereotype endorsement,’ and ‘risk perception.’ Confirmatory factor analysis on data from the other half of the sample endorsed the three-factor structure; however, two items were removed in order to improve ratings of model fit. This new 20-item ‘Perceptions of Sex Offenders scale’ has practical utility beyond the measurement of attitudes, and suggestions for its future use are provided

    Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity

    Get PDF
    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome

    Listening forward: approaching marine biodiversity assessments using acoustic methods

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mooney, T. A., Di Iorio, L., Lammers, M., Lin, T., Nedelec, S. L., Parsons, M., Radford, C., Urban, E., & Stanley, J. Listening forward: approaching marine biodiversity assessments using acoustic methods. Royal Society Open Science, 7(8), (2020): 201287, doi:10.1098/rsos.201287.Ecosystems and the communities they support are changing at alarmingly rapid rates. Tracking species diversity is vital to managing these stressed habitats. Yet, quantifying and monitoring biodiversity is often challenging, especially in ocean habitats. Given that many animals make sounds, these cues travel efficiently under water, and emerging technologies are increasingly cost-effective, passive acoustics (a long-standing ocean observation method) is now a potential means of quantifying and monitoring marine biodiversity. Properly applying acoustics for biodiversity assessments is vital. Our goal here is to provide a timely consideration of emerging methods using passive acoustics to measure marine biodiversity. We provide a summary of the brief history of using passive acoustics to assess marine biodiversity and community structure, a critical assessment of the challenges faced, and outline recommended practices and considerations for acoustic biodiversity measurements. We focused on temperate and tropical seas, where much of the acoustic biodiversity work has been conducted. Overall, we suggest a cautious approach to applying current acoustic indices to assess marine biodiversity. Key needs are preliminary data and sampling sufficiently to capture the patterns and variability of a habitat. Yet with new analytical tools including source separation and supervised machine learning, there is substantial promise in marine acoustic diversity assessment methods.Funding for development of this article was provided by the collaboration of the Urban Coast Institute (Monmouth University, NJ, USA), the Program for the Human Environment (The Rockefeller University, New York, USA) and the Scientific Committee on Oceanic Research. Partial support was provided to T.A.M. from the National Science Foundation grant OCE-1536782

    Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma

    Get PDF
    Hodgkin, 9p24Purpose Hodgkin Reed-Sternberg cells harbor alterations in chromosome 9p24.1, leading to overexpression of programmed death-ligand 1 (PD-L1) and PD-L2. Pembrolizumab, a programmed death 1-blocking antibody, demonstrated a high overall response rate (ORR) in patients with relapsed or refractory classic Hodgkin lymphoma (rrHL) in phase I testing. Methods KEYNOTE-087 ( ClinicalTrials.gov identifier, NCT02453594) was a single-arm phase II study of pembrolizumab in three cohorts of patients with rrHL, defined on the basis of lymphoma progression after (1) autologous stem cell transplantation (ASCT) and subsequent brentuximab vedotin (BV); (2) salvage chemotherapy and BV, and thus, ineligible for ASCT because of chemoresistant disease; and (3) ASCT, but without BV after transplantation. Patients received pembrolizumab 200 mg once every 3 weeks. Response was assessed every 12 weeks. The primary end points were ORR by central review and safety. Results A total of 210 patients were enrolled and treated (69 in cohort 1, 81 in cohort 2, and 60 in cohort 3). At the time of analysis, patients received a median of 13 treatment cycles. Per central review, the ORR was 69.0% (95% CI, 62.3% to 75.2%), and the complete response rate was 22.4% (95% CI, 16.9% to 28.6%). By cohort, ORRs were 73.9% for cohort 1, 64.2% for cohort 2, and 70.0% for cohort 3. Thirty-one patients had a response 65 6 months. The safety profile was largely consistent with previous pembrolizumab studies. Conclusion Pembrolizumab was associated with high response rates and an acceptable safety profile in patients with rrHL, offering a new treatment paradigm for this disease

    Sounding the call for a global library of underwater biological sounds

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parsons, M., Lin, T.-H., Mooney, T., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S., Van Opzeeland, I., Radford, C., Rice, A., Sayigh, L., Stanley, J., Urban, E., & Di Iorio, L. Sounding the call for a global library of underwater biological sounds. Frontiers in Ecology and Evolution, 10, (2022): 810156, https://doi.org/10.3389/fevo.2022.810156.Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.Support for the initial author group to meet, discuss, and build consensus on the issues within this manuscript was provided by the Scientific Committee on Oceanic Research, Monmouth University Urban Coast Institute, and Rockefeller Program for the Human Environment. The U.S. National Science Foundation supported the publication of this article through Grant OCE-1840868 to the Scientific Committee on Oceanic Research

    Auditory sensitivity in aquatic animals

    Get PDF
    © 2016 Acoustical Society of America. A critical concern with respect to marine animal acoustics is the issue of hearing "sensitivity," as it is widely used as a criterion for the onset of noise-induced effects. Important aspects of research on sensitivity to sound by marine animals include: uncertainties regarding how well these species detect and respond to different sounds; the masking effects of man-made sounds on the detection of biologically important sounds; the question how internal state, motivation, context, and previous experience affect their behavioral responses; and the long-term and cumulative effects of sound exposure. If we are to better understand the sensitivity of marine animals to sound we must concentrate research on these questions. In order to assess population level and ecological community impacts new approaches can possibly be adopted from other disciplines and applied to marine fauna

    A Fully Integrated Real-Time Detection, Diagnosis, and Control of Community Diarrheal Disease Clusters and Outbreaks (the INTEGRATE Project):Protocol for an Enhanced Surveillance System

    Get PDF
    BACKGROUND:Diarrheal disease, which affects 1 in 4 people in the United Kingdom annually, is the most common cause of outbreaks in community and health care settings. Traditional surveillance methods tend to detect point-source outbreaks of diarrhea and vomiting; they are less effective at identifying low-level and intermittent food supply contamination. Furthermore, it can take up to 9 weeks for infections to be confirmed, reducing slow-burn outbreak recognition, potentially impacting hundreds or thousands of people over wide geographical areas. There is a need to address fundamental problems in traditional diarrheal disease surveillance because of underreporting and subsequent unconfirmed infection by patients and general practitioners (GPs); varying submission practices and selective testing of samples in laboratories; limitations in traditional microbiological diagnostics, meaning that the timeliness of sample testing and etiology of most cases remains unknown; and poorly integrated human and animal surveillance systems, meaning that identification of zoonoses is delayed or missed. OBJECTIVE:This study aims to detect anomalous patterns in the incidence of gastrointestinal disease in the (human) community; to target sampling; to test traditional diagnostic methods against rapid, modern, and sensitive molecular and genomic microbiology methods that identify and characterize responsible pathogens rapidly and more completely; and to determine the cost-effectiveness of rapid, modern, sensitive molecular and genomic microbiology methods. METHODS:Syndromic surveillance will be used to aid identification of anomalous patterns in microbiological events based on temporal associations, demographic similarities among patients and animals, and changes in trends in acute gastroenteritis cases using a point process statistical model. Stool samples will be obtained from patients' consulting GPs, to improve the timeliness of cluster detection and characterize the pathogens responsible, allowing health protection professionals to investigate and control outbreaks quickly, limiting their size and impact. The cost-effectiveness of the proposed system will be examined using formal cost-utility analysis to inform decisions on national implementation. RESULTS:The project commenced on April 1, 2013. Favorable approval was obtained from the Research Ethics Committee on June 15, 2015, and the first patient was recruited on October 13, 2015, with 1407 patients recruited and samples processed using traditional laboratory techniques as of March 2017. CONCLUSIONS:The overall aim of this study is to create a new One Health paradigm for detecting and investigating diarrhea and vomiting in the community in near-real time, shifting from passive human surveillance and management of laboratory-confirmed infection toward an integrated, interdisciplinary enhanced surveillance system including management of people with symptoms. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID):DERR1-10.2196/13941
    • …
    corecore